
AD-_769° 45-6 66

ARRIVAL-TIME TOESTIMAT-ION ADAPTIVE
THRESH OLD-ING

Don J. Torrierir

Naval Research Labo ratory
Washington, El. C.

23 October 1973

2I

DISTRIBJTED BY:

NIttml Tw-:t- bbA .,....slnwi
U. &. WEARTMIBT OF COMENCE
25 Port Royal Road, Sprintfikl Va. 22151



A- Sct',lnt". C"Istqifwis'tlon ¢ -

DOCUME.NT CONTPOL DATA . R & D
Sef tilY f.ifs.,Iw.D1Cn of tlrtif, bod) .•4 bfltars .nd- d,d , g •mo•,.n A? ' be entered when fhi•e Inflo re _or t 3*ifOd•

I O-GINA T-N( AC 11- T ý (Corp-&( .e.#hot * ) .. REPO"l T %rcuR rv CIASSI1AUnCNi

Naval Research Laboratory Unelawified

Washington, D.C. 20390 
!b GROUP

I 0rFPORT TITLE

ARRIVAL-TIME ESTIMATION BY ADAPTIVE THRESHOLDING

4 OESC RIP' -- 9AdtE* (ITypo .1 report and j-n4.,I dare&)

A finual report on one phase of the NRL Problem.
N AU T 'NRIII1 (Firt. n.m.* m,ddio Initial. lostnn.

Don J. Tonriali
6 -EOP 1 1TC ill* TOTAL 10 Ob NoGE•. orb O p

October 23, 1973 1is 8
110 CON TRACT NO& GPANIT NO 101 OfIPI'N"IATOWS 012ýOR I NvujeEIS,

NRL Problem R06-55
b. P t° drC"r NO N R L R e p o rt 7 6 1 9

,ND02.1. 9b OTHER REPORT NO fArly ohrm nu"ber. thatwa y bo -- •nipd
thl. report|)

S0• OSTRBUJTION 9-AILME1[•e

SApproved for public release; distributioin unlimited.

I %PPLEMENTARY ,OVIES 1'z SPONSCMINC MILI T#AP ( ACT:VTv

Department of the Navy
Naval Air Systems Command

,T .[Washin n D.C. 20360
11.iSTRAC TjqD

Arrival-time estimation by adaptive thresholding i5 described. The probability
density of arrival time is derived for differentiable Mhar•ov processes. The special
case of additive, stationary noise is given pa-ticular attention. A direct derfvation
of the probability densit) of arrival time for pulses with sharply rising edges is
given for arbitrary noise. The results are applied to the Gaussian 9nd Rice distribu-
tions. Comparison with the Cramer-Rao bound of estimation theory indicates the
asymptotic optimality of adaptive thresholding for these two distibuihns.

Re;,oducd by
NATIONAL TECHNICAL
INFORMATION SERVICE

1.• S bvooattvnt of Cornmetfc

FORM (AGE ISoigf .1d VA 'Mi

DD NO 6.1473 (PAGE ,
S/Ni OtI:.607. 680 Secu'Itv CZ71ssifiretion



m- 4• •ii i[ _ I iii I
•,*LINK A t.Lf~KkR L.NK C

" "y WORDS
ROLE WT MD~IW OLC WY

Arrival-time estimation
Adapive thresholding
Pulse position
Threshold time
Edge detection
Rice distribution

I I

.. I

I I

DD _.1473

(PC 2) cfaaui



CONTENTS

Abstract .. . .. . .. . .. .

INTRODUCTION ......... 1..........

G~ENERAL INFORMATION .......................... 2

STATIONARY NOISE ................................. 5

STATIONARY, ADDITIVE NOISE ....................... 6

DIRECT DERIVATION FOR LARGE-SLOPE
LEADING EDGES.................................... 8

AlOPLICATIONS..................................... 9

ASYMPTOTI EULTS ................................ 1.2

REFERENCES ..................................... 13-



II

AB3grRAcr

Arrival-time estimation by adaptive tVresholdiag is described.
The probability density of airival ti'iv is derived for differentiable
Markov processes. The special case oft additive, stationary noise is
given particular attention. A direct derivation of the probability
density of arrival time for pulses with sharply rising edges is given for
arbitrary noise. The results are applied to the Gaussian and Rice
distributions. Comparison with the Cra-er-Rao bound of estimation
theory indicates the asymptotic optimality of adaptive thresholding
for these two distributions.
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ARRIVAL-rIME ESTIMATION BY ADAPTIVE THRESHOLDING

INTRODUCTION

One method of determining the arrival time of a signal is to measure the time at which
the signal crosses a certain threshold level. Figure 1 shows a pulbe with arrival time defined
to be the time at which the pulse exceeds level A. Suppose a series of pulses are received.
In a practical system the amplitude E will usually vary from pulse to pulse. If the rise
time does not change, the arrival time relative to the lead-ng edge will vary from pulse to
pulse, even if no noise is present. To remedy the situation, adaptive thresholding can be
used. Adaptive thresholding is defined to be ax ival-time estimation by thresholding in
which the level A is always a fixed fraction of E. Typically, AIE is set equal to 1/2.

,TIME

Fig. I-Received pulse with a threshold crossing

A practical adaptive-thresholding system is shown in Fig. 2. The received signal is
split into two branchefv. In the ',ower branch the sigpal is first delayed by an amount ex-
ceeding its rise time, which i assumed to be known. Then the delayed signal passes
.Arough an amplifier witl a gaia of G. The latter is a negative quantity such that iK3 1
equal to the desired val-.e of A 'E. The amplifier output is added to the original received
signal. The adder o,.put crosses the zero level at a time equal to the time at which the
level A is crossed pius the constant delay. In the important st.cial case of a half-ampli-
tude arrival time, AlE = 1/2 fnd G = -2. A detailed analybis of this adaptive thresholder
and an alternative one can br, foucd in the literature (1).

Arrival-time estimation by adaptive thresholding is not the optimum estimation pro-
cedure (2-6). However, it will be shown that adaptive thresholding provides an asymp-
totically efficient estimate at least in sor.e important cases. Furthermore, the simplicity
of implementiag adaptive thresholding systems givL* the method practical importance.
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Vig. 2-Adaptive thresholder

An approximate treatment of adaptive thresholding in tie presence of Gaussian noise
has previoudy been done (1). In this report the general cas,! of differentiable Markov
processes is studied.

GENERAL FORMULATION

Figu,'e 3 shows an exaggerated example of a multiple threshold crossing, which may
wccur when noise corrupts the received signal. The combined signal and noise is denoted
by r(t). When multiple crossings occur dose together, there is some ambiguity as zo which
cossing represents the actual pulse position, i.e., which crossing is closest to that crozsing
v.bich exists in the absence of noise. A somewhat rabitrary but simple strategy is for the
adapt'dve thresholder to detect only the first level crossing for each pulse it receives. Thus
we scek to derive the probability censity of the frst threshold crossing time of a received
csai fnwpbL

With tzspect a received pulse, we assume that the adaptive-thresholding system iscapabck of rejecting any level crossing which c~curs too prematurely, that i, before a cer-

tain starting time. Under this assumption, w,. may, without loss of generality, focus atten-
tion on a single received pulse. We seek to Jetermine the time of the first threshold cross-
iug to accur afer a starting time defined to be 1= 0. A practical system to accomplish
&.is rejection is shown in Fig. 4. The combined signal and noise, r(t), is applied to a fixed

S~A

V TIME

Fig. 3-Exaggerated example of a multiple thre hold crossing
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Fig. 4-System for the elimination of false alarms

thresholder, the level of which is set to a fixed fraction of the minimum expected amplitude
"of the received pulses. The outpt't of the fixed thresnolder initiates a counter. This cou*ter
continues to count as long as the fixed threshold level is exceeded by r(t). If the count
reaches a certain value, the gate 'I enabled, and r(t) is allowed to pass to the adaptive
thresholder. A reasonable critical value of the count is one-half of the minimum signal
duration. !f the minimum signal duration is large enough such that there is negligible
probability of a noise pulse exceeding this duration, the system of Fig. 4 will reject spurious
pulses occurring outside the immediate vicinity of thn signal edge. A reset pulse prepares
the counter for the next received signal. In keeping with our strategy to detect the first
level crossing, the delay in the upper branch should exceed somewhat the critical value of
the count.

With t1 a random varable equal to the first threshold crossing time of a received pulse,
fe(t) ib defined to be Its probatiility density function. To derive an expression for the
probability densityý, we relate it to another function more, readily obtained. Referring to
Fig. 5, let P(t)e represent the p-robability that a first thrBshold c"ossing of r(t) occurs in
the interva between (and t + c, asgurnbg no trossing hits occurred before titkne t. From
the above d.finitions, it foliows (7) that

fl~t = 4(t) 1

fr(x) dx-

Since fc(t) is a probability density function and we have assumed fc(t) = 0 for t • 0,
it is required that

f fc(x)dx 1. (2)

Using Eqs. (2) as a bcundy,-colditioL Eqs. (1) may be inverted to yield

fM(t) P exp f AX) . (3)

z 0
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TIME

Fig. 5-Small time interval of a received pulse

Once an expression for fl(t) is derived, Eqs. (3) will provide all the information needed for
our evaluation of the performance of adaptive thresbolding.

If the time interval between t and t + e is chosen small enough and r(t) is assumed
to be differentiable, we can writc

r(t + e) = r(t) + r'(t)e, (4)

where r'(t) is the time derivative of r(t). This equation implies that we may ignore the
possibility of more than one threshold crossirg in the small time interval. We now assume
that r(t) is a Markov process. In the definition , f(t)e, it follows from the Markov prop-
erty that the condition that no crossing occurred belox, 1'ne t is equivalent to the condi-
tion that r(t) is less than the threshold at time t. Thus if P[ ] signifies the probability
of the event in the brackets,

3(t)e = P[r(t +e) > Air(t) < A)

P[r(t) + -'(t)e > A > r(t)]

P[r(t) < 4]

where Eq. (4) has been used in the last step. We define frr'(x, y) to be the joint probabil-
ity density of r(t) and r'(t). The probability density of r(t) is represented by fr(x). In gen-
eral the densities will be functions of time. In terms of the density functions, Eqs. (5)
car. be rewritten as

f -ye A frr'(X, y) dxdy

0 A y
9 = (6)

j fr(x) dx
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where the region of integration in the nurn ;rator can be determined by inspection of the
rr plane. The time dependence of the density functions is implicit. In the limit of small
c, the inner integral of Eq. (6) can be evaluated. Taking the limit of Eq. (6), we obtain

foYfrr'(A, y) dy
*'0

3( t ) = (7)

fA fr(x) dx

The substitution of Eq. (7) into Eq. (3) gives a complete solution to our problem, Hot,,-
ever, the result will seldom be a simple closed-form expression, sLice the density functions
of Eq. (7) are time dependent, making the evaluation of the integral in Eq. (3) difficult
in most cases.

We could have attempted to derive f,(t) from the Fokker-PlanLk eouation for con-
tinuous Markov processes and first passage time theory. However, the present approach is
easier and yields greater physical insight.

STATIONARY NOISE

In most applications the noise can be considered stationary over the observation inter-
val In this case the general results can be simplified somewhat. Consider the received
pulse shown in Fig. 6. Time is divided into four periods. Region I is defined by 0 < t
< to, the time before the occurrence of the leading edge. R~egion II is defined as the inter-
val of the leading edge, to < t < t1. Region III is the interval betweeoi the leading and
txailing edges, t1 < t < t 2 . Region IV is the remaining time period. These definitions are
not precise but are often useful when the pulse has a reasonably fast rise.

In Region I, r(t) has no signal component, by definition. Since the noise is station-
ary, neither frr'(A, y) nor fr(x) has a time dependence. Thus

03(t) Co, 0 < t tot, (8)

and

f,(t) = Coe-cot 0 < t < to, (9)

where CO is a constant. Using Eq. (8) in Eq. (3), it follows that for Region II

fc(t) = e-COto(t) exp [ (t) dt, to < t <. t1 . (10)

In Region III the signal component of r(t) is approximately constant, by definition. Once
again the stationarity of the noise leaves no time dependence in f3(t). It is then easy to
see that f,(t) has the form given by

fc(t) = Cle--t. t. < t2, (11)
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I I III IIII I
IIi I

0 to t - ,
TIME

Fig. 6--Time regions of a pulse

where C1 and C2 are constants. In most applications the value of fc(t) is negligibly snmal
in Region IV.

Tze general features of the var'iation of fc(t) are seen in the previous expressions. We
will now consider some important ;,pecial cases.

STATIONARY, ADDITIVE NOISE

If the noise is additive, we can write r(t) = s(t) + n(t), where s(t) is the signal and
n(t) is the noise. In the presence of additive noise, Eq. (7) becomes

00 [y + s'(t)] f,1n'(A - s(t), ") dy

AM(t) = , (12)

j fn(x) dx

where s'(t) is the time derivative of s(t), fnn°(x, y) is cne j~it probaibiity density of the
noise and its derivative, and f,(x) is the probability density -f the noise. Note that, inl
contrast to Eq. (7), the time dependence is exhibited, expllcitcy in Eq. (12). Because h
noise is stationary, there is no implicit time variation in fnn'(x, y) or fn(x).

Equation (12) can easily be evaluated in two special cases. In the first one, it is as-
sumed that P[n'(t) < - s'(t)] is negligible for all s(t) and n(t) in Region I1. Formally, we
can write

i Cnn'(X, y) -- 0, y < -s'(t), -to -1 t < tI. (3

It is further assume* that n' is symmetrically distributed about the origin, that is,

fnn'(X, y) = (x, -';Y). (14)
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Under these two assumptions. Eq. (12) is approximately given by

s'(t)f(A- 3(t)
;~~~~A-s(t)f( () -. (5

_.(x) dx

Looking at the right side of Eq. (15), we notice that we can write

ME- j(t) --- In & f(x) dx (16)

Using the Eq. (16), 0(t) can be readlly integrated. Performing the integration, noting that
s(to) 0 by definition, and substituting into Eq. (10) yields (

SF -coto

in: f.(t) asu(t)fn(A-s(t)) _._x J to <ite<nt., (T7)

where the factor in brat kets is a constant. Equations (9), (11), and (17) constitute a

closei-form solution fo, the probability density in this spec;.al case.

For the second special case, we qsslirme s'%(t) is a constant M (not necessarily large)
in Region II. We furtney assume that nit) and n'(t) are statibtically independent. The

latter assumptio.i can be-stated formally as

-f..,"M Y) = fxfnY (18)

Under these two assumptions, if M * 0, Eq. (12) reduces to

- K Mfn(A - s(t))[•(t. =K (19)

f A-s(t)

00 fn(x) dx
,-00

where K is a constant defined by

K -1 4f"'(y) dy, M*0. (20)

Clearly, Eq. (A9) can be put in the form of Eq. (1 6). It then follows from Eq. (10) that

[f A-S~t)K-1 Ke-Coto tf,(t) = fn(A -s(t)) [ fn(t f(X) dX] kfffAx K

fn()dx)
(21)

ti
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where the last factor in brackets is a constant. Equ1 tions (9). (11), and (21) constitute a
closed-form solution for the probability density in this specia. case.

It is noticed that in the limit of large M, Eq. (20) indicates that K : 1. Then it is
seen that Eq. (21) reduces to Eq. (17).

It can easily be shown (1) that additive Gaussian n-i fulfills the conditions specified
by Eq. (14) and (18). ThuF if Eq. (13) is satisfied, we can use Eq. (17) for the Gaussian-
noise problem. Alternativly, if M is c(onstant, we can use Eq. (21) for the Gaussian-noise
problem. A stationary Gaussian Markov process must have a power spectrum of the
form (7)

a
ac ) W2 + b2

where a and b are constants. A fiat noise spectrum may be closely approximated over any
finite frequency range by a suitable choice of values f(,r ,he two constar:ts. Of course,
stationary white Gaussian noise, which is flat over the infinite frequency range, is neither
differentiable nor Markov.

In many practical situations the received pulse his a very short rise time. Rather
than uie the formulas dlready established, we seek a direct derivation of the formulas for
this special condition

DIRECT DERIVATION FOR LARGE-SLOPE LEADING EDGES

If the leading edge of the received pulse has a large slope, it is intuitively reasonable
to expect that there is only a small probability of more than one threshold -rossing in
Region II of Fig. 6. Formally, if fr'(y) is the probability density of the slope of r(t), we
assume that

fr'(Y) - O, y< 0 , to <t <t 1 . (22)

In other words, the signal slope is sufficiently great 1,. the combined signal and noise to
nave negligible probability of nonpositive slope. To simplify matters further, we set to
0, that is, we eliminate Region I.

Let Fr(X, t) be the probability that r(t) < x. Thus Fr(x, t) is a time-varying probabil-
ity distribution function. Since there can be only one crossing between 0 < t < tj, the
probability that no crossing occurs before time t is equal to Fr(A, t), for if r(t) < A,
then no crossing could have occurred before time t. Let F,(t) represent the probability
distribution function of the first crossing, that is, Fc(t) is equal to the probability that a
crossing occurred before time t. From this definition and the preceding statements,

1 - pe(t) = Fr(A, t), 0 < t < t1. (23)

Differentiation of a distribution function giws a density function. Thus at all points where
a derivative is defined, we have the following probability density function, for a threshold
crossing:
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We may ignore the possibility of a first crossing for t > 11 if

1 - f,(0dt << 1. (25)
0

In deriving Eq. (24), we have not invoked the Markov property. Thus Eq. (24) is
valid for processes with short rise times and differentiable distribution functions. We now
turn to examples of the applications of this equation.

APPLICATIONS

As a first example of the application of Eq. (24), consider additive Gaussian noise.
Then Fr(A, t) - F,,(A - s(t)), and it follows that

Sf c(t) s'(tlf n(A -s(t)), 0 < t < r . (26)

Except for a multiplicative constant, Eq. (26) is identical to Eq. (17), which was derived in a
more rigorous manner.

Zero-mean additive Gaussian noise has a probability density specified by
1 / ,2\

f&(x)- xp (27)

Suppose that the leading edge of a received pulse can be approximated by

s(t) = lO•t<0<-t< , (28)

where M is a large constant. Then Eqs. (26) through (28) yield
Al (A -M')2

f(t)exp = 7J, 0 t. (29

We now assume that the threshold is at the half-amplitude level, that is. A = 1t /2. Under
this assumption, Eq. (25) gives the condition

2 erfc << 1, (30)

where we define

erfc (x) C xp (j~dt. (31)
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Equation (30) gives the condition under which we mnay ignore the region t > t 1 .

We can easily calculate the expected value of Ic, the random variable specifying the
pulse porsition. We have, if Eq. (25) is vaid and A = Mtj/24

f2A/Af

£[•] •tfc(t) dt. (32)

0

Using Eq. (29) in Eq. (321, we obtair.

E[tei -•i,1- 2 rWe (33)
L

Thus the axrival-time estimation by adaptive thteshoiding at the half-amplitude level is
biased. However, Eq. (3O% indicates that the amount of bias is snmall and that. this bias de-
creases nmpidly as si.gnal amplitude increases.

A measure of the fluctuation in pulse position Js provided by the standard deviation
of the maival time, which is defined to be

When Eq. (25) ic satisfied, we car. write

f 2A/M
'0 t 2 f'(t) di. (35)

From Eqs. (29) and (33) throueg (35y, it fqLows that for additive Gaussian nc4se,

2 r
2 (A' IA

It, 2 - 2 ee r fe

+j)2rf()i 2-e2-ark-LL

t. jI-2rf( -i/A\ '4 - 36

Additive Gaussian noiwe appears i. the - n.oias for coherent amplithde-modulation
(AM) tystems. Hiwever, noncoherer.t AM systems ,,sal~a contarin envelope @atctor. At
the output of the detector, r(t) is de_-rcibed by a Hice distWbiAbuon. It ca.n ia lic"wr. that the
probability distribution function-is (8)

F-(AHt) et,- SI Y) -exp I-.-Jdx, (37)

where 10 (x) is the zero-order Bessel function of imaginar y •pe. From Eqs. (24) and (28),
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fc (t) a ex p (_~ f / 2u2 exp

2(02M~ (38)

where 11 (x) is the fist-order Bessel function. The substitotion of Eq. (38) into Eqs. (32)
and (35) results in integrals which cannot be evaluated analytically. However, with the
aid of a digital computer, it is possible to numorically compute the value of fn, Lne nor-
malized ecxpected arrival tinie, defined by

n =_ -Eltel -M EUti: 1 (9)
t1 2A c

It is alsc possible to determine the function g(A/v), which is d6fimed by
po

s = M g() (40)

The results of the numerical computations are summarized in Table 1. The firsr column

is the signal-to-noise ratio (SIN) as defined in the usual AM system. Thus

SIN = 10 log1 0 l = lO2lo -2--. (41)

The fifth column is calculated from Eqs. (36) and (40). It is noticed that the standard
deviation for the Gaussian distribution (coherent AM system) is uniformly less thon the
standard deviation for the Rice distribution (noncohE:ent AM system). For a fixed value
of S/N, the degradation in standard deviation for the Rice distribution is defined to be
the additional power required to achieve the standard deviation that exists in the Gaussian
case for the specified S/N. The sixth column lists the degradatior in decibels as a function

•- Table I

3igno-N-•cie D)ependency €f Various quantities

' IN t g(A/ ig- AporoxiLaoif.

12 2.815 0.402 1.048 0-99 0.44

S14 3.544 0.478 1.028 J .00 t 0.24

16 4.462 0.487__. 10 _-� 1.000 0.13

18 5.617 0' 921.009 1.00 .. 0.08

20 7.7IJ 049 ,.05, .0
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of SIN, For SIN < 12 dB, it" is found that. Eq. (25) is not well satisfied for eite the
Rlice or the Gauissian distribution; hence, theive values of SIN have not been 1*,ted.

Examination of the third column in Table I shows that the estimation procedure i3
biased. However, the bias i~teadiW decreases as SIN increases.

ASYMPTOTWIC RESULTS

We co-clude with a heuris;tic discussi-n of the asymptotic properties of arn'jaltinie
fttimation by adaptive thresholding. it ha., beerl seen In the l1ast section t1hat the esti-
mation Procedure is biased. Of course, some of the apparent bias is due to outi havinlg,
assumied a negligible probehili-ty of at first threshold coss-Ing for t > t1 . Some bias is4 also
due to setting the threshold at the half-implitud level. For bothteRiead auin
distributions, the arrival-time estirrate approaches the unbiased value of o;-.e-half the. rise
tiite, in the limit of large SIN'. Thus we can say that Lhe estimate is asyrmptotica-lly- un-

biased.

For the unbiased estimnate of arrival time of a low-pass pulse with large S,,N in white
Gaussian nloise, tl., Craier-Rao bound requires (6) that

8-~.2  -> [s'(z,) 2 C t42)

Iwhi5re N is the noise poýwer spectral density. Jf s'(t) =Af is a constant and t1  2A/MA,
E~q, (42) reduces to

Mt2 > 2  (431)

where we have assumed that the rise 4mme is approximately equal to the inverse of the
sys~tm noire bandwidth B. Thus we have set

VB ~N = a 2, (44)

where 02 is the mean noise power. A compariban of the fifth collunn of Table 1 and
Eq. (40) with Eq, (43) indicates that the adaptive-thresholding estimate approaches the
minimum variance expressed by the Cramner-Rxio bound. Thus adapti-ve thresholding is
asymptotically efficient for white Gaussian noise if Eq. (44) is valid. Clearly the perfsrzn-
ance of a noncoherent systemn is bounded by the performance of Vize corresponding co-
herent system. Thus from, a comparison of the fourth ant' fifth columns of Table'l, it~
appears th~at adapfsve thresholding is also asymptotically ei:cient for the Rician process.
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